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The quantum theory of free automorphic fields 

Richard Banach? 
Theoretical Physics Department, Schuster Laboratory, University of Manchester, 
Manchester, England 

Received 21 August 1979, in final form 28 November 1979 

Abstract. Heuristic spectral theory is developed for a symmetric operator on the universal 
covering space of a multiply connected static spacetime and is used to construct the quantum 
field theory of a multiplet of scalar fields in the customary sum-over-modes fashion. The 
non-local symmetries necessary to the theory are explicitly constructed, as are the pro- 
jections on the field operators. The non-existence of a standard charge conjugation for 
certain types of representation is noted. Gauge transformations are used to give a simple 
and complete classification of automorphic field theories. The relationship between the 
unprojected and projected field algebras is clarified, and the implications for Fock space 
(vacuum degeneracy, etc) are discussed-earlier work being criticised. The analogy to black 
hole physics is pointed out, and the possible role of the Reeh-Schlieder theorems is 
speculated upon. 

1. Introduction 

It is well known that non-trivial topology in a spacetime produces interesting effects in 
quantised fields defined on it. Casimir stresses are one familiar example (DeWitt er a1 
1978, Dowker and Banach 1978, Banach and Dowker 1979b). The occurrence of 
topologically inequivalent field configurations-twisted fields (Isham 1978, Avis and 
Isham 1978) and automorphic fields (Banach and Dowker 1979a)-is another. More 
recently, interacting fields have produced novel and unexpected features such as 
spontaneous mass generation (Ford 1979a) and non-causal photon propagation in QED 
(Ford 1979b). 

This paper is devoted to the quantum theory of free automorphic fields. Now the 
sine qua non of automorphic field theory is the fact that one studies fields on a 
non-simply connected spacetime. The non-simple connectivity of the space associates 
to it a simply connected universal covering space, and automorphic field theory aims to 
understand field theory on the former in terms of field theory on the latter. The fact that 
the two spaces are locally indistinguishable (from a purely geometrical point of view) 
means that one can envisage an observer, confined to a small region of the space, 
assuming that the physical space actually i s  the universal covering space and attempting 
to understand his physics in these terms. This lends a purely physical motive to the 
study. 

We particularise to the following: ( a )  Spacetime topology is T O M .  T is time, M is 
multiply connected, T Oh? is the universal cover, where fi is the universal cover of M. 
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2180 R Banach 

T :  2 + M is the covering projection, and we have that r := r1(hf) is discrete and acts 
effectively and transitively on T - ’ ( x )  for x E M .  ( b )  We take the metric ds2 = dt2-dv 
to be compatible with the topology in the obvious way; in particular we assume that r 
induces isometries. For simplicity we take do2  to be time-independent, (c) We study a 
multiplet of complex scalar fields possessing a U ( n )  internal symmetry restricted to 
rigid gauge actions for simplicity. 

The geometrical framework outlined above encompasses all the situations studied 
in practice so far. Most of the work has centred on the two-point function 
(Ol+(x)+.’(x’)lO) (time-ordered where appropriate) and on the physical quantities 
derivable from it (e.g. (TsY)). Calculations proceed either by going straight to mode 
sum expansions of the quantities of interest or by use of the method of images 
(effectively an automorphic projection) on the two-point function. The two methods 
must agree as has been shown (Banach and Dowker 1979a), but the image sum method 
in particular, using as it does the full field theory of the covering space to write down the 
covering space two-point function, obscures the field theoretic analogue of image 
summation. Thus we would like to pull back the topological issues in the theory into the 
field theory itself, rather than relegate them to the status of mathematical afterthoughts 
to be applied to the two-point functions-which are classical singular functions and thus 
easily dealt with. The fact that one can relegate the topological issues in this fashion 
owes its existence to the linearity of the differential equations that the two-point 
functions satisfy and the uniqueness theorems for them, and not to any deep under- 
standing of the effects of topology on quantum field theory. The further examination of 
the ‘pulling back’ is therefore a pertinent matter. 

In 0 2 we develop the spectral theory of a symmetric operator acting on functions on 
A? in a more complete form than was given previously (Banach and Dowker 1979a). 
Not all of the details given are necessary to the development of the field theory (some 
are demoted to the Appendix), but they do nevertheless answer some very obvious 
questions left open by the earlier work. In § 3 the results of § 2 are used to quantise the 
field on A?. Non-local symmetries and gauge symmetries are constructed in the 
operator algebra and used to project the quantised field. The Wightman functions are 
considered, and charge conjugation is also briefly discussed. The results of § 3 are used 
to give a simple classification scheme for automorphic field theories in § 4. In contrast 
to local gauge theories, each sector in the theory defines an acceptable field theory 
without the need to go to the dual space of the classifying set. 

In 9 5 the results of § 3 are used to discuss the operator algebra as a whole and the 
corresponding Fock space. We see that, in fact, the terminology of ‘projecting’ the field 
algebra is misleading and that a subalgebra and partial states language is more 
appropriate. This of course is analogous to the late-times situation in gravitational 
collapse and other physical situations where a horizon is present. One can only measure 
aspects of the state depending on the relevant subalgebra, and the precise amount of 
freedom in the rest of the state depends on the physical situation in hand. In 
automorphic field theory we see that the amount of freedom is maximal. 

A certain amount of speculation on the role of the Reeh-Schlieder theorems is 
included. 

Notational convention : In the following, it will frequently be necessary to employ 
subscripts, both to indicate a function name and to label its components. Where this 
happens, the subscripts are separated by a comma: thus f i , ,  is the pth component off,. 
Commas therefore have no connection with derivatives in this paper. 

2 
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2. Spectral theory 

The object of interest to us is the Hilbert space L:(fi) of (square integrable) complex 
n-tuple-valued functions on hi with the usual inner product 

where d p  is the r-invariant volume element of the metric d a 2  on A?. 
An automorphic function on hi is one satisfying 

f , (YX)  = a,”(Y)fv(x),  vx,  ( 2 )  
where a ( r )  is an n-dimensional representation of r which we take to be unitary in this 
paper. For an arbitrary f~ L:(A?) we set ’,‘(x) to be given by (for <CO)  

which satisfies (2). Equation (3) defines a linear subspace of Lf,(A?), L:(a) in which all 
the functions satisfy f =  7. Thus L:(A?) = Li(a)OL:(a)’, and the purpose of this 
section is to clarify how a symmetric linear operator in L:(hi) respects this split. 

Let K be a linear operator (bounded for simplicity), and P the projection operator 
f +  7. Then we have the following textbook result (proof omitted): 

If K is a Hilbert-Schmidt operator with kernel K,,(x, x ’ ) ,  we have 

The right-hand side of (4) can be written k = I? in the notation of Banach and Dowker 
(1979a). 

A sufficient set of conditions for the satisfaction of (4) (and one that can usually be 
satisfied in practice) is 

Now suppose that K is symmetric-in the Hilbert-Schmidt case this means 

K , Y ( X ,  x’) = K L  (x‘, x), (7) 

and suppose it has a relatively simple spectral theory with a purely discrete real 
spectrum and eigenfunction expansion 

and each eigenvalue has finite degeneracy. Then lemma 1 says (and an explicit proof in 
Banach and Dowker (1979a) confirms) that (in an appropriate basis) eachfi lies entirely 
either in L?,(a) or in L:(a)’ if and only if (4: is true. 



2182 R Banach 

Since the behaviour of L:(a) under the action of r is well understood-it just 
consists of functions satisfying (2)-one naturally asks that the behaviour of L:(a)' is 
under r. It must clearly contain any functions automorphic by representations b ( r )  
inequivalent to a (r), since 

if a ( T )  and b ( T )  are inequivalent, by the orthogonality relations. On the other hand 
suppose that b ( r )  = Ra(T)R-', then, iff  is automorphic by b ( r ) ,  we have 

which can also be zero if Tr R = 0. Lemma 1 then tells us that, for any f i  in the 
expansion (8) which is automorphic by some b ( T )  = Ra(T)R-', we must have Tr R = 0. 
There remains the possibility that there are f, in (8) not automorphic by any rcpresen- 
tation of r whatsoever. These we can call anarchic modes. 

In general then, the structure of L : ( U ) ~  is quite complicated. However, in the case 
when K is one-dimensional, i.e. 

KIL,,(x, x ' )  = k ( x ,  x')@01",)=K("), (1 1) 

where 0:; is the ( n  x n )  unit matrix and k ( x ,  x ' )  satisfies (6), we can give a complete 
decomposition of the eigenfunction expansion into automorphic and non-automorphic 
modes. 

Firstly, we know that (6) applies by assumption, and ( 5 )  is obviously true for any 
a(I ' ) ;  hence lemma 1 applies. 

Now K"' has eigenfunctions which are an orthonormal basis in L:(A?); call them 
e, ( x )  and suppose they are all automorphic by some (necessarily one-dimensional) 
representation of r, i.e. 

e , ( r x )  = h ( y ) e l ( x ) .  (12) 

In addition, suppose f is a function in Li(A?) automorphic by some irreducible a (r). 
Then its components each lie in L:(A?) and so can be expanded in terms of the e , ;  thus 

f ,  = &'e,. (13) 

f , ( y x )  = a , v ( y ) P Y ' e , ( x )  = @,'b , (y )e , (x) .  

Expressing the automorphic character of f  in two ways, we obtain 

(14) 

Thus p intertwines a (I?) and the one-dimensional b, and so is necessarily zero. What we 
have shown is a special case of the following (the proof of which is essentially identical to 
the above): 

Lemma 2. A function automorphic by an irreducible a ( r ) C  U ( n )  cannot have any 
proper subset of m of its n components expanded in terms of functions {ei} automorphic 
by {bi (T)c  U(m)} .  Thus the only candidates for expanding components of higher- 
dimensional automorphic functions in terms of lower-dimensional modes are the 
lower-dimensional anarchic modes. 

We now show how this takes place. 
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Let fi be any mode of K"' whatsoever. Then the standard theory of symmetry 
coupled with (6), which says that K'" commutes with the action of r, implies that the 
eigenspace of fi carries at least one irreducible representation of r. Restricting 
attention to the one rel%vant to fi, we have a representation of r in the unitary operators 
in the eigenspace: r-, r, where ?f(x) = f(y-lx). We can write this action as a matrix 
representation of r in the eigenspace 

z 
Consider now the alternative action of r in the eigenspace, namely r + F ,  where 
$f = f (yx). This is an antirepresentation of in the unitary operators in the eigenspace 
which we can antirepresent in terms of unitary matrices 

$fi = wij(y)fp (16) 

The composition of these two antirepresentations means that w (r) is a representation 
of r, and in fact it is obvious that the representations u(T) and w ( r )  are contragradient 
to each other. 

! 

So (16) says that 

fi(yx) = wij(y)fi(x), (17) 

which is just (2) except that i and j are not internal indices. If we now turn to K'"' 
(where n = dim w (r)), then the function Q,, where Q,,j = f i ,  is an eigenfunction, j is now 
an internal index, and Q, is automorphic by w( r ) .  

This construction canonically associates a representation of r to each mode of K(l ) ,  
and automorphic functions automorphic by a given representation (up to equivalence) 
can have components only within the subspace of LT(A?) spanned by functions to 
which this is the associated representation. We have shown: 

Lemma 3. For each eigenfunction f of K'l) ,  we can find an n, an n-dimensional 
irreducible representation of r, a (r), and an eigenfunction Q, of K'"', such that f is the 
first component of 0 and @ is automorphic by a (r). 

One can repeat the above construction with anarchic modes of K(m) ,  the result being 
an mn-dimensional representation of I', since the i index above will be tensored with the 
already existing internal index. We see that the representation is in fact w(I')OO"', and 
so is simply reduced to m copies of w (r), each component of the original f generating its 
own automorphic piece. The uniqueness of the association off with the first component 
of 0 in lemma 3 will thus be lost. Nevertheless, we see that the anarchic designation of 
an eigenfunction is a purely dimension-dependent thing. If we embed the anarchic 
eigenfunction in L:(A?) for sufficiently high n, we can build it up into an automorphic 
mode. 

We can confirm that the above mechanisms indeed give us thf 'right' automorphic 
mode as follows. Let { f i , w }  be a set of modes transforming under r by some irreducible 
representation w(T) as in (17). We project out the automorphic part of these modes for 
some irreducible a (r); thus? (we assume enough zero-valued components have been 

Compare the treatment here with the treatment of the analogous quantity in Banach and Dowker (1979a), 
where the contragradient representation u ( T )  is used. 
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added to {h+} for this to make sense) 

Now unless a (I?) E w(r ) ,  the coefficient of A.,” is zero. This shows the uniqueness of the 
automorphic representation associated to fi,,. If a = w, the orthogonality relations say 
that 

(19) Lz = ( 1 / 1fw.i ( n  =dim a =dim w). 

Thus the set {fi} has been reflected along its diagonal, clearly making it automorphic. If 
we do the same thing again with the roles of the two indices reversed, i.e. we find that 
part of f i , ,  which transforms under f as w(r) ,  we find K’f,,,. Thus we get back to our 
starting point, but having lost out on the norm of { f , }  by n’. This illustrates that the two 
projections involved are not compatible in the sense that a set {A} canno$ 
simultaneously display correctly automorphic behaviour and the right I‘ 
transformations. Thus there must be a change of basis involved in the change between 
the two, and the final task of this section will be to exhibit this change of basis. 

Suppose then we are given an n-fold degenerate eigenspace of K‘” spanned by {f,} 
which behave under f according to some irreducible a ( T )  as in (17). The above results 
tell us that we must go to K‘”’ to find automorphic behaviour. The basis {fi} induces an 
n’-foid degenerate basis {Aa,*} of the corresponding eigenspace of K‘“), where we set 

+a 

We next split up the basis into n subsets of n, Xi, where 

C i = { f .  /( /+!(mod . . n)I.w)* (21) 

Thus, for example, CO is the ‘diagonal’ subset {hi,,}, XI the ‘subdiagonal’ (mod n), etc. 
The modes in Xi are obtainable from those in Xo by applying the gauge transformation 
Si, where 

si,&” = S,u(v+ i (mod !I)}. (22) 

Therefore the structure of CO implies that of Xi, and we restrict our attention to CO, 
Clearly the function g, where 

is in the span of CO, (Eo), is of norm 1 and is automorphic by a ( r ) ,  since g,, =f,. Its 
orthogonal complement in (CO) consists of functions of the form h, where 
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The a (r)-automorphic part of h vanishes, since 

= 0, (26)  

since the expression in square brackets clearly vanishes. If we apply Sk(k  # 0) to either 
g or h and then project, we find by similar calculations that 

Thus, since g and all possible h's span (Zo), we find that for k f 0 
-a 
(&) =o.  

Therefore, of the n2  independent modes in the eigenspace, only one Survives. 
Automorphic projection turns out to be a singularly wasteful process. 

What of the modes that are annihilated? They are not automorphic by a ( r ) ,  but we 
know that the representation associated with them is a ( r ) .  What happens is a case of 
the remarks following lemma 3. The canonical construction puts the modes into an 
(n2)*-dimensional space, and a reduction is needed to regain pieces automorphic by 
a (r). In this process the original modes are scrambled up and all come out looking like g 
for an appropriate reducing operator. 

This suggests that in some sense all the modes in the eigenspace are gauge equivalent 
to g. We now show that we can find a basis for the eigenspace for which this is actually 
the case. 

Lemma 4. There exist n diagonal unitary matrices Ti in U(n )  (one of which, To, may be 
taken to be the identity), orthogonal in the trace inner product: ( U1, U*) = Tr U :  UZ. 

This is proved in the Appendix, since the methods are rather inappropriate for the 
present discussion and would detract from our main goal. 

Apply the Ti to g .  Since they are diagonal, they give linear combinations of the fii+ 

and so map g into (Eo). Orthogonality in the trace norm becomes orthogonality in 
L ; ( f i )  for the Tig ,  and so the T i g  span (CO) .  Now apply s k  to the Tig. It is trivial to 
observe that the SkTig span ( E , )  in precisely the same way that the Tig span (&), and 
this gives us the basis we have been looking for. 

Thus the n2 eigenfunctions Riig,  where 

Rij = Si T, (29) 

are linear combinations of the CfiDL+(x)}  and constitute a basis. Since they are all gauge 
relatives of g ,  they are all automorphic, R i j g  being automorphic by Rija(r)R;i. It is 
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trivial to confirm that, for (i, j )  # (0, 0), Tr RI,  = 0, as must be true by the remarks 
following (28) and the remarks following (10). 

We now have enough information at our disposal to be able to give a complete 
decomposition of the eigenfunction expansion (8) for any K'") and any unitary 
representation a (r). 

Gauge symmetry will be seen to be a symmetry of the theory we want to construct in 
the next section, so we may, without loss of generality, take a ( r )  to be in fully reduced 
form a (r) = 0, a, (r), and we can then deal with each of the irreducible summands a, (r) 
separately. Let a l ( r )  be ml-dimensional and occupy the upper left ml  x ml part of 
a ( T ) .  Then it will only affect the first m l  components of anyfELi(A?),  and so we can 
ignore the others. 

We pass amorg the eigenspaces of K'")  and temporarily disregard any which do not 
transform under f as al(T). An eigenspace belonging to a l ( r )  will contain nml modes 
of the formf,,,, (by analogy with (20)), and we fix on the m: of them for which the index 
01 s ml, temporarily disregarding the others. The m: we subject to the change of basis 
constructed above; we extract and keep the one automorphic mode and discard the 
m: - 1 others. 

We now return to the temporarily disregarded modes and look for eigenspaces 
behaving like a z ( T ) ,  repeating the procedure above for thef,, having ml < a G m2 + ml. 
Continuing in this manner, we eventually exhaust a (r), and any modes remaining which 
have neither been kept nor positively discarded are now discarded. They will consist of 
(i) anarchic modes, (ii) modes automorphic by none of the a , ( r )  present in a (r), and (iii) 
modes whose canonically associated representation is one of the a, (I?), but whose 
non-zero components do not match correctly with the position of a , ( r )  in a ( r ) .  

Thus the kept modes span L:(a) and the discarded modes span L:(a)', achieving 
the desired decomposition. 

3. Field quantisation 

Consider the following operator on smooth complex functions on A?: 
L ( X ,  x ' )  = (-vivi + m2)S(x, x'). (30) 

It is symmetric and elliptic in the inner product given by 

and so, particularly when A?f is compact, it is reasonable to assume that L has a discrete 
spectrum with each eigenspace finite-dimensional: 

LYi =hiYi, A j > O ,  (32) 

(K,  y,) = S i p  (33) 

Of course, L is not Hilbert-Schmidt?, although the notation in (30) is suggestive, and we 
will continue to treat it as if it were, since the only significant property of Hilbert- 
Schmidt operators of real use to us is the discrete nature and finite-dimensionality of the 
eigenspaces. 

t Its inverse usually will be. 
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Extending to T @A?, we see that the Qui, where 

QWi = [ exp( iwt ) / (2~)”~]  Yi, 
are orthonormal in the obvious extension of (31) to TBA?, 

2187 

(34) 

(QUE, Q , )  = Sl,S(w, g), ( 3 6 )  
and thus form a ‘complete set’. 

Considering now the wave operator 

K ( x ,  x ’ ) =  ( d : + L ) S ( x , x ’ ) ,  (37) 
we see that the Q,, are in fact eigenfunctions, and those for which 

(38) 2 w = A ,  

are solutions to the wave equation. Setting 

f, = [exp(-iwA,t)/(2wA,)”*I~, = ~W~W~, ) ’ /*Q- , , ,~ ,  

wA, = +4, (40) 

( f l ,  A> = SI,, (f1,f::>=0, U:, f T ,  = -ay, (41) 

(39) 

where 

we see that 

where 

is the usual spacelike-hypersurface-independent inner product for solutions of the wave 
equation particularised to the t = constant surfaces for simplicity. The completeness of 
the {Qui} implies that the { f i ,  f;} are complete in the space of solutions to 

K 4 = 0  (43) 

4 ( x )  = (iG(x, x‘), 4 ( x ’ ) ) ,  (44) 

iWx,  x ’ )  = C f f ( x ) f l ( x ’ ) - f l ( x ) f ~ ( x ’ ) .  (45) 

with any solution satisfying 

where 

1 

In general we are interested in n-tuple-valued fields, to which end we define fIcl by 

f I e 4  = &,fl (46) 

( f ie ,  f /P>  = SySap, ( f ie ,  f$> = 0,  (fL f,*) = -&,S,L?. (47) 

4 ( x )  = (iG‘”’(x, x ’ ) ,  4 ( x ’ ) > ,  

as before. Extending (42) in the obvious way we find 

K given by (37) obviously extends to K‘”) ,  and solutions to K‘“’4 = 0 have the property 

(48) 
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with 

iG("'(x, x '1 = c fL (X ) f i a  (x '1 -fie ( x  )fL (x ')- (49) 
i, a 

Having completed these preliminaries, we are in a position to quantise the fields. 

which are equivalent (at this non-rigorous level) to the equal-time relations 

[ J ~ ( X ) ,  ~ + ( X ' ) ] I ~ = ~ ~  = [ J , ~ ' ( x ) ,  ~ ( X ' ) ] I ~ = ~ ,  = -iJ,G'"'(x, X ' ) I ~ = ~ ,  = -ia$)(x, XI) ,  

where S$'(x, x') is the delta function on A?. 
Our main goal in this section is to implement the projection (3) on the quantised 

fields (50) ,  (51) with the algebra generated by the {U::) ,  bji'} which we call B. First we 
need some preliminaries. 

Let G be a compact matrix group, Familiar representation theory tells us that we 
may regard G as a subgroup of a unitary group without loss of generality. Now it is well 
known (according to Markus 1973) that the exponential map is onto for GL(n, e) ,  or, to 
put it another way, every invertible matrix has a (complex) logarithm. If A E GL(n, @) 
happens to be unitary, this logarithm must necessarily satisfy 

[log A]' = -log A.  (57) 

The point of the above is the following. G may be (and usually is) a Lie group with its 
own Lie algebra and associated exponential map, but the exponential map is, in general, 
not onto (e.g. O ( n ) ) ,  and so arbitrary g E G may not have logarithms within the Lie 
algebra. By embedding in U ( n )  we can, however, find a logarithm for any g E G in the 
bigger Lie algebra of U ( n ) .  Since quantum theory (in any concrete representation) 
always takes place within a complex Hilbert space, this embedding is always available to 
us in practice. In the following, 'log A' is always to be understood in this generalised 
sense. 

Now let g,, E G and let {ait '} be a set of creation/annihilation operators satisfying 
the usual CCR. Then the above discussion allows us to formally write 

&,a, = W g ) a , U ' ( g , ,  ( 5 8 )  

where 

U ( g )  = exp(-af[log gI,kak). (59) 
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By virtue of (57), U ( g )  is a unitary operator in the field algebra and provides a unitary 
implementation of the automorphism a, -+ glia, of the algebra. 

We have two classes of such automorphisms in mind for automorphic field theory: 
the isometries c$(x)-+ 4 ( y x )  and the gauge transformations 4 ( x ) +  g 4 ( x ) .  For the 
isometries, we assumed that L given by (30) is such that we can decompose its action 
into that on finite-dimensional eigenspaces. This split is clearly preserved when we pass 
to the solution space of K'"). Thus the solution space consists of finite-dimensional 
subspaces { (U,)}  corresponding to specific frequencies. Pick one, ( w , )  say. It is spanned 
by certain of the La, upon which we fix our attention. Because r induces isometries, L 
formally satisfies (6) and therefore so does K'"), and thejefore ( w l )  carries at least one 
irreducible representation of r according to the action r; thus 

fI,(YX) = W : ? ( Y ) f l h ) ,  (60) 
where w ! : ' ( r )  is a unitary representation of I' as in (17). Looking at the expression for 
4(x)  in (50) we see that (60) is equivalent to 

implements P in ( U , )  and is clearly an antirepresentation of r. Taking adjoints, we find 
for ( - -ma)  =({fc}) that (61) corresponds to a; ,  -+ W&~)*U; ,  = w ~ ~ W i ' T a ~ ,  and a cor- 
responding definition of T'-""" ( y )  which must coincide with that of T'wi)a ( y )  by taking 
the adjoint of (58). The {b,a}  are treated analogously. 

Taking products over the (*u,)cu we can implement the isometries thus: 

T(Y)  = n T'"+(Y), (62) 
(+W,.,) 

T(Y)4(X)TT(Y)  = 4 ( Y X ) ,  T(Y)4+(X)TL(Y)  = 4 i ( Y x ) .  (63) 
For the gauge transformations, we proceed in an analogous manner. K'") is a 

diagonal operator and therefore commutes with gauge transformations g E V(n) ,  i.e. 

K'"'(g4) = g ( K ' " ' 4 ) .  (64) 
Therefore, again, each eigenspace ( U , )  carries the (same) antirepresentation of U ( n ) ,  

(gf ) ,a (x)  = gaPfiP(x), (65) 

(66) 

A"'%) = exp(-a%[log gTlapalp) ,  (67) 
which is a representation of U(n) .  The {bl,} must be treated slightly differently. Taking 
adjoints of (65)-(67) would lead to the b:Jk part of 4 transforming as g* rather than g, 
so we set 

giving 

which implies 
T 

UlY -+ arPgPY = gYPalP 

implemented by 

(gf*),a(x) = g d $ ,  (68) 

b:, --&SPY = gYPbP (69) T t  
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and 

Setting 

we find 

A(g)4(x)At(d  = g 4 b ) ,  (72) 
and taking adjoints of (66) and (69) we also find 

A(g)4+(x)At(g) = 4'(x)g'= g*c$'(x). (73) 
We note that, since they act on different indices, T ( r )  and A(U(n) )  clearly commute. 

The projections 4 -+ 4 are now easy to implement. a ( r )  is a subgroup of U ( n ) ,  
hence implementable by (73). Setting 

-a 

A ( r )  = A(a(r)), U ( Y )  = A(Y)uY-l), (74) 
we find 

U(T)  is clearly a representation of r in the Fock space F(X), where X is (the Hilbert 
completion oft) the space of positive-energy (positive Klein-Gordon norm) solutions of 
the wave equation K'"'4 = 0. 

Up to now we have done everything using the basis {frz)}, which was obviously the 
easiest to work with thus far, but clearly it is not the best for dealing with automorphic 
fields. Accordingly we note that, since L satisfies (6), its extension K(")  satisfies (6) and 
(S), and so we can apply the spectral theory of § 2 to the solution space of K'").  Thus we 
can write 

4 ( X ) = C P l g , + 4 1 h : ,  (76) 
I 

The {g,} are supposed to be related to the {fIa} by the machinations of 4 2. For the {h , }  
we have three cases to consider. 

I. a (I-) is real. This means that if g is automorphic by a (r), so is g* ;  and if g is not, 
then neither is g* .  Thus we may set h, = g, in (76), (77). Charge conjugation is the 
interchange p!" -4:') (implementable by analogy with previous results), and since g 
and g* live or die together in the projection, charge conjugation survives in its standard 
form for the projected fields. 

11. a(T) is equivalent to a*(r )  but not reducible to real form. Thus a*(T)= 
Rta(r)R. In this case, if g is automorphic by a ( r ) ,  then so is Rg*-not g*. Thus we set 
h, = Rg, in (76), (77). Charge conjugation comes out modified for the projected fields, 
since it is now clearly mixed up with a gauge transformation which cannot be eliminated. 
It is still the interchange pi') -qjt), but the wavefunctions of conjugate particles are not 
the same. 

i We resolutely avoid all discussion of domains of definition, details of convergence and similar technicalities. 
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111. a (r) is not equivalent to a *(r). Then if g is automorphic by a (r), neither g* nor 
any gauge transform of it is, and so it will disappear in automorphic projection; so we 
may as well set h, = g, for automorphic g,. If g is not automorphic, then g* (or some 
gauge relative of it) may be, and so we set h? = ( R ) g ?  in this case. To preserve the g / h  
symmetry we can transform the original g,  to (h?)* if we wish, giving h, = g, for all 
modes. Charge conjugation as such disappears for case I11 under projection, since no 
pit' or 4:’) has a conjugate operator that survives-regarding 4 as a complex field in this 
case is perhaps misleading, and it is best to rewrite 4 as a purely real field multiplet in 
terms of its real and imaginary parts, automorphic behaviour being given by 

In this real representation, the field is self-conjugate (one could adopt a similar attitude 
in case I1 of course), and we see that in this case the connection between the 
interpretations of 4 and 4 ,  straightforward in case I, somewhat more tenuous in case 
11, disappears almost completely. 

Automorphic modes, it must be added, do not exist in isolation, but are part of a set 
of k2 modes as in § 2. Therefore, where a gauge transformation has to be performed in 
cases I1 and I11 above, it is to be understood that all k 2  modes are subjected to the same 
transformation to ensure their linear independence is preserved. 

With these thoughts in mind, we see that we can find a basis in which the fields can be 
written as in (76), (77), with each mode having yes/no behaviour under 

automorphic projection, 4 + 4 ,4 ’  + 4’ . Since the change of basis involved does not 
mix positive- and negative-energy solutions, it is a trivial Bogoliubov transformation 
and so preserves the commutation relations and definition of the vacuum IO), 

-a 

-a * -a 

so that the two bases are entirely equivalent. 
Let us consider the effect of gauge transformations a little further. Normally one 

uses Noether’s theorem to derive a conserved current and integrates the time 
component to obtain a conserved charge which, when normal ordered and exponential, 
generates the gauge transformation. All of these operations can be written in terms of 
the field variables themselves and so are local. To say the same thing again another way, 
the charges are all actually constructed from the Lie algebra of the gauge group and so 
the whole of the one-parameter family of transformations they generate lies in the 
gauge group. By contrast, the discreteness of r means that any representation a ( r )  
need not be exponentiable within the Lie algebra. Thus, although we can implement it 
as done above, the one-parameter families generated by the {log(a(T))} need not all lie 
within the gauge group and may only intersect it in a discrete number of points. This 
fact expresses a possible essential non-locality in the situation we consider. A more 
extreme example of the same thing is provided by the isometries x + ‘yx, for which there 
is no possibility of deriving ‘charges’ unless there are Killing vector fields whose integral 
curves connect x and yx, in which case the ‘charges’ are essentially the momentum 
operators of the field 4 in the direction of the Killing vectors. 
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Now consider the effect of a gauge transformation g implemented by A ( g )  on an 
-a 

automorphic field 4 .  Normally we have 

as required. Acting now by A ( g ) ,  

A ( g 1 6 ( YX 1 a + ( g  1 
= A ( g ) T ( y ) 6 T ' ( r ) A t ( g )  = A ( g ) A ( y ) 6 A t ( y ) A ( g )  

= Aka  ( y ) g - ' ) A ( g ) & A t ( g ) A ' ( g a  (y1g-I )  = [ga (yk- ' lEg&l ,  (82) 

we find that A ( g )  implements the inner automorphism of the representation as well as 
implementing the gauge transformation, as we would expect. If g is generated by a bona 
fide charge in the Lie algebra, we can say that the charge generates the unitary 
equivalence between the gauge-related automorphic fields. 

We close this section with some remarks about two-point functions of the projected 
fields: firstly, the commutator, or projected analogue of (54). We can write (49) as 

(83) i G ( " ) ( x ,  x ' )  = 1 g? ( x ) g i ( x ' )  - hi(x)h? ( x ' ) ,  
i 

which leads to 

where 

i 

and 

1 if g i ( h T )  is automorphic by a ( T )  
otherwise. Si,a(r)= { 

The equal-times version of this is clearly 
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Hence 

(using the invariance of the vacuum) 

One can obviously do the same thing for higher-order functions, time-ordered 
products, and so on. 

4. Classification 

The results of the previous section allow us to classify quantised automorphic fields in a 
simple manner. So let us consider field theories on a multiply connected T O M  having 
an internal symmetry group G which we take to be compact in order to avoid 
infinite-mass multiplets-as is customary. Clearly, upon pulling back to T O G  we see 
that every representation a (r) gives an automorphic field theory, so that the various 
different possibilities are exhausted by the elements of Hom(.rrl(M), G). Furthermore, 
the compactness of G means that an analysis similar to that given in P 3 can be carried 
out for the implementation of the gauge symmetries in G, and so a ( r )  and ga(r)g- '  
determine the same theory. Thus we form the equivalence classes under inner 
automorphism in Hom(Tl(M), G), and the set of equivalence classes, written 
HomG(Tl(M), G), classifies the automorphic field theories on 2 associated with the 
particular covering map T :  A.? -+ M and particular gauge group G. 

Computing HomG(.rrl(M), G) is not too difficult in principle. We assume that 
r1(M) = r has been given in generator-relation format with generators y1 . . . yn and 
relations rl ({yi})  . . . rk({-yi}). Any map ~ : { y ~ } ~ = ~ , . . , ,  -+ G extends by definition to the free 
group on the {yi} by 

and gives a representation in G of the free group, which then factors down into a 
representation of r if and only if 

a(r,({Yz})) = r,({a(X)H = e. (92) 

So Hom(.rrl(M), G) is given by those functions a : {y , }+ G which satisfy (92)t. Know- 
ledge of the structure of G then enables us to determine the action of any inner 

t Banach and Dowker (1979b) gives somewhat more detail on this point, and computes some specific 
examples. 
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automorphism by g E G on the a (n ) ;  a (n )  + ga ( y ) g - ' ,  and thus to find which elements 
of Hom(.irl(M), G) are equivalent-hence determining HomG(.irl(M), G).  

In practice, we use coordinates for G which will normally be a Lie group, and so if 
has n generators and G is m-dimensional, the representations of the free group on 
{ Y ~ } ~ = ~ . . . ~  will be in 1-1 correspondence with an open set in R"". The k relations provide 
a number of equations of constraint via (92) (naive dimension-counting does not usually 
work), and this determines a subspace H of R"" which is 1-1 correspondence with 
Hom(.irl(M), G).  Finally, the action of inner automorphisms a +gag-' yields an 
equivalence relation on H, and the set of equivalence classes HG is in 1-1 cor- 
respondence with HomG(rrl(M), G) .  There may even be a subspace I-? of H which 
intersects each element of HG precisely once, in which case its points label the elements 
of HG and so coordinatise HomG(.irl(M), G) .  Of course, judicious choice of coor- 
dinates for G greatly eases these calculations and can provide transparent expressions 
for the subspace fi (if it exists). The coordinates in fi of a particular theory can be said 
to express the 'topological quantum numbers' of the theory. 

How does all this compare with what is done when one admits local gauge 
symmetries into the theory? Local gauge symmetries are of two types, large and small. 
Small gauge transformations are those which are homeomorphic to the identity 
transformation, others being large. Two field configurations are equivalent if they differ 
by a small transformation and the equivalence classes are the elements of the first 
cohomology set of M with coefficients in G,, H1(M,  Ga), where Ga is the sheaf of germs 
of differentiable G-valued functions on M (see Hirzebruch (1966) for details, especially 
p 41). Further lengthy analysis is required to re-express this classification in terms of 
more familiar quantities such as the standard cohomology groups of M (see Avis and 
Isham (1978) for relevant details). Each equivalence class (or element of H'(M,  G,) is 
said to define a sector of the theory. Now restricting the theory to one sector breaks 
local gauge symmetry, because large transformations are excluded. The usual solution 
to this is to form linear combinations of the sectors which give states in the theory 
invariant (up to a phase factor) under large and small transformations. Now the large 
transformations permute the sectors, and this leads to a group structure on equivalence 
classes of large transformations. The linear combinations required then turn out to be 
elements of the dual group of this group. See Jackiw (1977) and Avis and Isham (1979) 
for specific examples. 

We can now contrast this with the rigid gauge framework of this paper. The most 
salient feature is that rigid gauge transformations do not split into large and small types. 
Even discrete transformations are exponentiable from the identity in the sense dis- 
cussed in § 3. Thus the whole business of forming linear combinations of sectors is 
avoided. In automorphic rigid gauge theories each sector defines a complete theory, 
where by a sector we mean a member of HomG(.irl(M), G ) .  

5. The field algebra 

In this section we consider the so-called projection operator q5+ q5 further-in 
particular its extension to 92 and consequences and applications of this. Now 92 is 
generated by the { p ! ' ) ,  4!')}, and the map 

-a 

is defined for these by 

according to the various cases considered in § 3. We extend this to the whole of 92 in the 
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obvious way: 
+-a -a c:P ( t )  (PY’. . . p n  1 = (Pl+’) * * * (P“ ). 

+a 
Suppose for some p i  that pi = 0. Then we have that 

+-a‘-? +-a c a  c a  o =  p .  1 1  p .  =pt  I 1  p .  = [ p i , p  ] = 0 . 
Thus, for any A E 9, 

+-a -a -a +-a 
A =  UA = U A = 0 ,  

(94) 

(95) 

and the only projection on 9 that extends to is the zero map. This is just a reflection 
of the fact that B is simple, since the kernel of must be a two-sided ideal, and it is well 
known that B does not possess any of these? (other than 9 and 0). 

was a non-trivial projection. A state of the field is (if 
nothing else) a positive linear functional on B. If p is a state, we can write the 
expectation of A as (p ,  A )  and that of A as (p,  z). Defining then p as p we find 

Suppose indeed that 

+-a -a 

and we have pulled back the projection to the space of states. The discussion of the 
previous paragraph thus says that there is no pullback to the states. 

-a 
-a 

However, 4 = 7, which is obvious from (75); thus we do have aprojection on the 
linear subspace of B spanned by single creation/annihilation operators 9, 

A E Y + A = c aip i  +pip; + Y ~ i  + 84; (ai. . . si E e). (98) 

(Actually, we could extend to 9 provided we apply (94) only to normal ordered 
products (or some other suitable convention), the result for non-normal products being 
given by the CCR; however, this extension would simply define a linear map on 9 which 

does not preserve the multiplicative structure (e.g. if pi = 0, p i p ;  = 0) and so would be 
neither natural nor relevant to the physics at hand.) 

The non-zero part of Y (where Y has its obvious meaning) generates a subalgebra 

of B, the automorphic field algebra. As a general rule both Y and Y are 
infinite-dimensional with a countable basis, and so there will be a map V : Y +  9’ 
defined by 

-a -a 

+a +a 

-a 

-a 

-a 
where p i  is any p i  in Y and pi is some annihilation operator which survives automorphic 

projection. The infinite dimensionality of both Y and Y ensures the 1-1 nature of V is 
+-a 

? For suppose A is in the ideal and A containspi (say) as a factor in one of its terms. Then [A,  p!] is a ‘smaller’ 
element of 9. We can continue in this manner until we get a multiple of the identity as in (95); hence (96) 
follows. All of this can be regarded as a crude bastardisation of the sophisticated results of Borchers (1967) 
(for Minkowski space) and Slawny (1972). 
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possible. The CCR and the obvious rule 

V h . .  . p J  = (Vpd . . . (VpJ, etc (1 00) 
define an extension of V to an isomorphism between 9 and Note that V is not an 
automorphism of 8, since it is not onto. This isomorphism V is actually implementable 
by a pseudo-unitary operator 7": 9(X)+ 9(%) (1-1, but again not onto) by analogy 
with 0 3, 

(101) (+) - 7" ( "Ir' vpi - p ?  , 
7"'v = L" WT = U,,-,., , (102) 

and what we have shown is essentially a case of the well-known result that the Fock 
representation of the CCR over a separable Hilbert space (of infinite dimension) is 
unique up to unitary equivalence (e.g. Berezin 1966, theorem 1.4). 

Now our spectral theory says that for the one-particle states X we have 

XpZ@Z"' (103) 

sp= 7@7"'. (1 04) 

9 ( X )  = 9(Z@Z1)=9(5r!)@9(Z"'), (105) 

reflected at the one-particle operator level by 

Thus we have for Fock space 9(2)= ~ O X O ( X 9 O X ) , O ( X 0 2 9 O 2 ) , O . .  . 

where the isomorphism (105) is given by 

[ ( k  + l ) ! / k !  l!]"2/@k0s9/)t,I@k)Oj9/), (106) 

where 0, is the symmetrised tensor product, l @ k )  is a k-particle state in 9( %), and 191) 

is an /-particle state in 9( 2'). Thus we can write for some 19) E 9 ( X )  

-a 

+a 

where the 16,) are a basis for 9(Z) and the l,yi) a basis for 9(%'). Now automorphic 
observables lie in ; thus, if A E then 

where 

- C l  

and so we see that the 9( XL) part of the state only enters into the expectation value 
through the expression P k k ' ,  and consequently any state I$') yielding the same P k k '  is 
indistinguishable from 14) in the automorphic field algebra. Thus the states on 9 divide 
into equivalence classes under the equivalence relation of having the same P k k ' .  In the 
language of local C*-algebras, the states on are partial states. From the form of 
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(109) it is clear that I$) and 19’) are equivalent if and only if they differ by a unitary 

transformation of s(~P), i.e. 

19) - 19’) ‘3 19) = Kl$’), 

7 4 w k )  = lek), wl unitary in ~(2’). (111) 

(1 10) 
where 

In particular, the vaccum of %,, IO),, is 

IO), = {lO,)Olx)/; IO,), the vacuum of 9( X ) ,  Ix) any normalised state in WZ’)}, 
which in particular contains the vacuum of 9(%’), i.e. 

-0 

(112) 

10) E lo>o; (113) 

thus we can regard the two vacuua as expressible by the same element IO). 
We would now like to re-examine some simple models prevalent in the literature, in 

the light of the general comments made above. 
In the Appendix to his paper, Fulling (1973) considers two periodic boxes of lengths 

L and 2L and the two field theories on the resulting topologies of T O S ’ .  Clearly the 
larger box is a covering space for the smaller and so the formalism of this paper applies. 
He then takes a fixed function g with compact S:,) support (U say) and considers the 
smeared fields 4 (g )  in the two T OS’ universes. Now 4 (g )  has Cauchy data restricted 
to U in each case, and so the evolution of 4 in the Cauchy development 9 of U is the 
same in both cases; hence (argues Fulling) local quantities in 9 ought to depend only on 
9 itself and not on the embedding space. Working out (Ol#(g)4(g)(O), and 
(014(g)q!~(g)10)2~ and finding them different, Fulling concludes that the vacuua IO), and 
IO)*, are different (since the field operators are, according to him, the same). 

The conclusions of this section force us to disagree with Fulling’s reasoning. To start 
with we have seen that we can take IO), and to be represented by the same state 
IO),, (IO), is an equivalence class containing IO),,); therefore the differing values of 
(Ol4(g)4(g)/O) must mean that the operators 4 (g )  are different in the two cases. How 
can this be? We note that Fulling’s argument that the evolution in 9 is independent of 
anything outside works fine for a classical field, but the 4(g)  in question is a quantum 
operator. As such it lives in 5% (actually 9) and can be regarded as having no direct 
relationship with $3 at all. To be more explicit, we can write a quantised real field 
smeared with f as 

4 k )  = c U1 ( ( f l ,  g)) + a  r (U:, g ) )  
I 

= alal + P P T ,  (114) 
I 

where the { f l ,  f :, g }  belong to some inner product space (in practice a function space and 
hence the connection with 9) and (( , )) is a bilinear form on the space (the specific 
details are unimportant). All of the details of the specific form and domain of g and the 
nature of the fi*’ become coded into the numbers {al, P I } .  As far as the field algebra is 
concerned, two 4 (g )  operators are only the same if the sets of numbers {al, P I }  are the 
same. The two 4 (g )  of Fulling are not the same, since &(g) contains only those {aI, P I }  
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of &.(g) arising from modes in the expansion of q5 which obey 

wherefdiam(x) =f(Xdlam) (Xdlam being the diametrically opposite point to x in s&=)), since 
we can regard brt as being an automorphic field on S:,,, under the trivial represen- 
tation of the projection S& + S:=) which identifies diametrically opposite points. It is 
clear that, when embedded in the S&,-J field algebra, q5L(g) is in fact 4 2 ~ {  g ), and, since 

the g considered by Fulling does not satisfy g =  g (in Sf2=) ) ,  the two operators 
&(g) = 42L( g ) and q&(g) are obviously different; d L ( g )  describing a situation which 
in fact involves a disconnected Cauchy development r9 = UTE,- y 9  when embedded in 
T@S:2L) .  Thus the locality arguments used by Fulling lose their force when these 
non-local effects are considered. 

To recapitulate, we saw above that % and %a are isomorphic, and it is clear that the 
isomorphism preserves the values of the {al, PI}. Thus it makes sense to talk about a 
single abstract Fock representation of the field algebra. However, the way the 
isomorphism works means that field operators corresponding to locally defined quan- 
tities do not map to the same sets of {a,,P,}-depending on whether the local 
phenomenon is viewed in the covering space or the factor space-hence do not map to 
the same abstract operator. This is a consequence of the non-local nature of the 
embedding of the process on the factor space in the covering space; a copy of the 
phenomenon in question has to be glued to each pre-image in the covering space-this 
embedding must in turn be considered in order to be able to identify two separate 
processes in two separate spaces as locally identical. 

There is another way of looking at the situation just discussed, namely in the light of 
the Reeh-Schlieder theorems, one of which says, loosely speaking, that the subalgebra 
of smeared field operators %(O) for which the smearing functions lie within a fixed 
bounded open set 0 of Minkowski space, acting on the vacuum, generate a dense set in 
Fock space. Generalising crudely, as we did above, to the case of arbitrary background 
geometry, we see that the subalgebra belonging to an open set should also send the 
vacuum to a dense set in $(%‘e). Now %a does uot send the vacuum to a dense set in 
S(Z), and so neither does %(0)nBra. We see that few localised operators are 
automorphic. Bearing in mind that T ( g )  = 4(-;*), which presumably is in %‘((rO) if 
the support of g is in 0, this should not surprise us. However, the $23 (0) n %a argument 
works even if 0 = r0, and so we see that even %((rO) contains a vast quantity of 
non-automorphic operators. This is only to be expected considering the large number 
of non-automorphic test functions having supports in r0. 

The other well-known Reeh-Schlieder theorem says that adjoining the vacuum 
projection to %(O) makes it irreducible. Again an intersection with %a causes a 
breakdown of this property. 

These comments show that it is incorrect to identify uncritically the algebras %(O) 
and %a (0) = % (0) n ga. 

Going a little further, the cyclicity of 10) for %(O) means that 9(0)10) has a ‘tail’ in 
$(%’). However, the overlap of this tail with states %?(O’)lO), with 0 distant from 0, 
tends to fade smoothly. Taking now %2,(0) in place of %(O), we see that the overlap 

-a* 

-a * 

-a *. 

.t Minor technicalities involving the normalisation of the fi when actually embedding have been ignored here. 
They do not affect the conclusions. 
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must be periodically strengthened as 0’ passes copies of 0 in r0. This kind of 
difference in the behaviour of the tails is the sort of phenomenon pointed to by Haag 
and Kastler (1964) in discussing unitarily inequivalent representations of the CCR, and 
hence, despite the fact that %? and are abstractly isomorphic, the isomorphism even 
being implementable by the pseudo-unitary Y, we find them to be unitarily 
inequivalent; essentially because there is no unitary W such that 

as can be seen from (75). 
The non-fading of the tail of %?a(0 ) lO)  leads us to suspect that, in the IF[= CO case, the 

automorphic operators exist as strong limits of localised operators and are not members 
of the algebra of quasi-local operators at all, by analogy with the case of Minkowski 
space where operators which are global, affecting near and far regions equally strongly, 
are characterised thus. 

The arguments presented above, sketchy though they are, bring us into conflict with 
the recent paper of Kay (1978), who seeks to explain the Casimir effects arising in 
automorphic situations as follows: (1) A small neighbourhood of the factor space looks 
like a small neighbourhood of the covering space so we identify the local algebras in the 
two cases. (2) Assume (using local quasi-equivalence ideas) that the covering space 
representation of the local algebra is sufficient to calculate everything, and thus that the 
factor space energy momentum.(Ol Tc(ylO)a may be obtained as the expectation value of 
the covering space energy momentum operator in some density matrix state on the 
covering space algebra, i.e. that 

-a 

(3) Concurrently with (2) assume (from the known inequality of (O/T,,/O) and 
.(Ol T,vlO)a) that the factor space ground state p is not the same as the covering space 
ground state lO)(Ol. 

Now (1) is incorrect as we have seen, since a local operation on the factor space pulls 
back to a non-local operation on the covering space in general. (3) is incorrect as we 
have seen explicitly, since 10) E IO),, and (2) is nothing more than an attempt to pull back 
the topology from the operator algebra to the space of states, which we have also shown 
to be impossible. Indeed, we see that, since T,, is a bilinear product of field operators, 
a(OlT,JO)acan eventually be expressed in terms of W2, and since no amount of 
manipulation will remove the U(?)  factors from between the q5(x)  and q5 ‘ ( x ’ )  in (89), we 
cannot express TZa in terms of W2. Were we able to do so, (116) would be true. 

We will finish this section with some comments on perhaps more familiar matters, 
namely the accelerated observer in Minkowski space (AOMS), the eternal black hole 
(EBH) and the collapsing body (cB), with particular regard to the Reeh-Schlieder 
theorems. We will be very brief on notation and definitioh, referring to the article by 
Isham (1977) for an overview and extensive references. 

A cursory glance at the Penrose diagrams for the AOMS and EBH shows a striking 
similarity. Both diagrams split into L(eft), R(ight), F(uture) and p(ast) regions, and a 
timelike observer in EBH or uniformly accelerated observer in AOMS are confined to, 
say, the R regions only. In both cases one sets up field decompositions in these regions 

-a --a 

-a -a 
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(the Boulware and Rindler decompositions) which are incomplete in the sense that the 
field modes are not specified in the L regions. One then specifies a further set of modes 
in the L regions in the most convenient manner. Therefore the total field can be written 

and we see that the field (and hence Fock space) splits into two parts in precisely the 
same way as for automorphic field theory (103), (104), (105). As far as observables 
constructed from 4R go, the S(XL) part of states enters only through the density matrix 
obtained by tracing out S(XL) as in (log),  (109). Hence we note that, as far as 
observers in R are concerned, the Boulware/Rindler vacua are degenerate. It is clear 
that this degeneracy is a consequence of the idealised nature and global properties of 
the models. It is not true in the CB case, since in the distant past there is no horizon, 
hence no field split. 

Now in the case of AOMS and EBH one can define field modes by a different, global 
prescription yielding the Minkowski and Hartle-Hawking vacua respectively; it turns 
out that the Minkowski vacuum is full of thermally distributed Rindler quanta, and the 
Hartle-Hawking vacuum of Boulware quanta. This and other analogies lead us to 
identify the mathematical structure of these models very strongly. 

Taking Minkowski space, we know that both Reeh-Schlieder theorems are true. 
They are true in particular for the region R, i.e. %(R) has /@Mink as cyclic vector and 
%(R) U (\o)(ol)M,nk is irreducible. Going now to the EBH, we are tempted to likewise 
conjecture that %(R) has 10)H-H as cyclic vector and that % ( R ) u ( I O ) ( O / ) ~ - ~  is 
irreducible. We are supported in this to some extent by the CB, since at early times and 
large radial distances the metric is hardly different from Minkowski space, and so, if we 
suppose the Reeh-Schlieder theorems true in that regime, the smooth evolution of the 
CB is unlikely to have as catastrophic effect as to invalidate them later on. 

Two more points are worth making. Firstly, it would seem to matter which vacuum 
projections we add to %(R); in Minkowski space, the ( l O ) ( O l ) ~ i ~  projection clearly 
commutes with uLuL, where uLis any L mode, and so $??(R) U (lO)(O/)Rin is apparently not 
irreducible. Secondly, it is known that in Minkowski space %(O), for which there is 
some open 0’ totally spacelike to 0, contains no creation or annihilation operators. 
This is presumably due to the fact that creation and annihilation operators are formally 
obtainable by smearing the field with functions which are not good test functions. Now 
the subalgebra of Rindler R operators is constructed formally from creation and 
annihilation operators and so is assumed to contain them. Using the Bogoliubov 
transformation to express these in terms of Minkowski operators, we find that % (0) 
apparently contains Minkowski creation and annihilation operators. This must be 
untrue, and so the identification of % (0) with the formal algebra of Rindler R operators 
is cast into grave doubt. This problem evidently reflects back on the first point, 
weakening the status of our counter-example. 

The above remarks have obvious repercussions for the EBH and CB, not to mention 
other situations. Whatever the ultimate truth or otherwise of the conjectures made 
here (and in the rest of this section for that matter), it seems fairly clear that the 
Reeh-Schlieder problem in a general spacetime holds the key to a much deeper 
understanding of field theory in a general background. For automorphic field theory, it 
can give crucial information on locality/non-locality questions, and in an event horizon 
context it can illuminate the precise role of the horizon operator algebra, the normal 
assumption being that large red shifts make its effects negligible. 
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6. Concluding remarks 

The major points to have emerged from the preceding five sections are the following. (1) 
Lemma 1 always enables us to make a split in the spectral resolution of an operator into 
automorphic and non-automorphic parts. In the case of complex fields, this split can be 
further decomposed to completely clarify the structure of the resolution. (2) The 
spectral decomposition in turn permits a fairly simple-minded construction of 
automorphic fields in terms of the automorphic modes of the field. (3) Non-locality 
plays a significant role in the relationship of the automorphic and covering field 
algebras; a subalgebra and partial states formalism seems to be the best heuristic vehicle 
for the theory, and the whole area would gain immensely from a thorough rigorous 
investigation. (4) The Reeh-Schlieder problem would amply repay vigorous study in a 
general background, throwing much light on not only automorphic field theory, but on 
many other situations of great interest. 

Appendix 

In this Appendix we show the existence of n diagonal, n-dimensional unitary matrices, 
orthogonal in the trace inner product. We take one of them to be the identity. 

The fact that they are unitary and diagonal means that each non-zero entry must be 
of absolute value one; and we can also take out an overall phase factor in each to make 
the (1, 1) element equal to one. 

Mapping each diagonal unitary matrix to its sequence of diagoyal elements, we see 
that we are looking for n - 1 sequences of the form (1, e'"; . . . elAn - I )  satisfying 

l+e '*;+.  . .+el*n-l= 0 ,  ( A l )  

l+e""-":'+, . *+ei(""-l-""-d=o* (A2) 

The condition ( A l )  is the orthogonality to (1, 1 . . . l ) ,  while (A2) represents the mutual 
orthogonality of the n - 1 additional sequences. 

Clearly the A ;  constitute ( n  - 1)* independent real parameters. Counting con- 
straints, we see that ( A l )  represents 2 x (n  - 1) real constraints, and (A2) represents 
2 x $(n - l)(n - 2) real constraints- n(n  - 1) constraints in total, so that we have a 
highly overconstrained system. 

If we picture the sequences required as sequences of unit vectors in the complex 
plane, we see that ( A l )  is the condition that the vectors fit together to form a closed 
n-gon. Thus, despite the fact that for any particular sequence ( A l )  represents but two 
constraints, we see that we already encounter subtle domain problems for the A i  to 
ensure that the endpoint of the ( n  - 2)nd vector in the chain is within a distance 2 of the 
starting point of the chain, so that the last two vectors are actually able to close the gap. 

In view of all of these difficulties, then, it is particularly gratifying to be able to 
present a special solution to the problem for any n. 

For the moment, letn be prime, and consider the finite field Z,, of arithmetic modulo 
n ;  in particular its multiplication table. Thus let n,j = i xj(mod n ) .  For i fixed and 
#O(mod n ) ,  the numbers nij, j = 0 . .  . ( n  - l ) ,  exhaust H, in a 1-1 manner, a 
consequence of the primeness of n. Furthermore, nil, - ilili  = n{il-jz(mod and so for 
il # i2 we have that the nilj - n iZ j ( j  = 0 . . . ( n  - 1)) also exhaust Z,. Now let elw be an nth 
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root of unity. We know (even for non-prime n )  that 

1 eikw = 0, 
k E Z ,  

so, setting 
0.. = eini,u 

we have that 

which we recognise as (Al)  and (A2) respectively. Thus for prime n the nij solve the 
problem (clearly noj = 1 for any j ,  so this is just the identity sequence). 

For non-prime n we simply take the tensor product of the solutions for its prime 
factorisation. Thus let n = ml . . . mk with the mi all prime, and let 

f i ? i l . . . i k ) ( , 1 . . . j k )  = * * * nc!k, (A71 

1 * "  1 a ? i l . . . i k ) ( j l . . . j k ) =  1 'rj,..' c ' t ! k = O  (A3) 

where Clzt are the solutions for the prime factors. Then for (Al)  we have 

j i E Z m l  i k E Z m k  h Q m l  I ' k E Z m k  

and similarly for (A2). This completes our existence proof. 
Finally, it is interesting to speculate on the uniqueness of our solution. For n = 2 , 3  

the solution is obviously unique (no degrees of freedom in an equilateral triangle). For 
n = 4 it is easy to see that the general solution of (Al )  is a rhombus and so has one free 
angle in it. After that, a little trial and error shows that the general solution of (Al )  and 
(A2) is (identity), (1, 1, -1, -l), (1, -1, *eiu, FeiP)+, and so we actually see that there is 
a one-parameter family of solutions despite the apparent overconstrainedness of the 
system. For n = 5 and above we see that we encounter the domain problems mentioned 
above, and the general implications of (Al)  and (A2) are not at all easy to fathom out. 
The nature of the general solution for any n would be an interesting, if rather useless, 
piece of information. 
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